Quantum Theory for Mathematicians

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hall, Brian C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Graduate Texts in Mathematics, 267
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04176nam a22005655i 4500
001 978-1-4614-7116-5
003 DE-He213
005 20170124141303.0
007 cr nn 008mamaa
008 130619s2013 xxu| s |||| 0|eng d
020 |a 9781461471165  |9 978-1-4614-7116-5 
024 7 |a 10.1007/978-1-4614-7116-5  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Hall, Brian C.  |e author. 
245 1 0 |a Quantum Theory for Mathematicians  |h [electronic resource] /  |c by Brian C. Hall. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 554 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 267 
505 0 |a 1 The Experimental Origins of Quantum Mechanics -- 2 A First Approach to Classical Mechanics -- 3 A First Approach to Quantum Mechanics -- 4 The Free Schrödinger Equation -- 5 A Particle in a Square Well -- 6 Perspectives on the Spectral Theorem -- 7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements -- 8 The Spectral Theorem for Bounded Sef-Adjoint Operators: Proofs -- 9 Unbounded Self-Adjoint Operators -- 10 The Spectral Theorem for Unbounded Self-Adjoint Operators -- 11 The Harmonic Oscillator -- 12 The Uncertainty Principle -- 13 Quantization Schemes for Euclidean Space -- 14 The Stone–von Neumann Theorem -- 15 The WKB Approximation -- 16 Lie Groups, Lie Algebras, and Representations -- 17 Angular Momentum and Spin -- 18 Radial Potentials and the Hydrogen Atom -- 19 Systems and Subsystems, Multiple Particles -- V Advanced Topics in Classical and Quantum Mechanics -- 20 The Path-Integral Formulation of Quantum Mechanics -- 21 Hamiltonian Mechanics on Manifolds -- 22 Geometric Quantization on Euclidean Space -- 23 Geometric Quantization on Manifolds -- A Review of Basic Material -- References. - Index. 
520 |a Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Functional analysis. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461471158 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 267 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-7116-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)