Measure, Integral, Derivative A Course on Lebesgue's Theory /

This classroom-tested text is intended for a one-semester course in Lebesgue’s theory.  With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students.  The three main topics presented are measure, integratio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ovchinnikov, Sergei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02894nam a22004935i 4500
001 978-1-4614-7196-7
003 DE-He213
005 20151030101754.0
007 cr nn 008mamaa
008 130430s2013 xxu| s |||| 0|eng d
020 |a 9781461471967  |9 978-1-4614-7196-7 
024 7 |a 10.1007/978-1-4614-7196-7  |2 doi 
040 |d GrThAP 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.42  |2 23 
100 1 |a Ovchinnikov, Sergei.  |e author. 
245 1 0 |a Measure, Integral, Derivative  |h [electronic resource] :  |b A Course on Lebesgue's Theory /  |c by Sergei Ovchinnikov. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a X, 146 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a 1 Preliminaries -- 2 Lebesgue Measure -- 3  Lebesgue Integration -- 4 Differentiation and Integration -- A Measure and Integral over Unbounded Sets -- Index. 
520 |a This classroom-tested text is intended for a one-semester course in Lebesgue’s theory.  With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students.  The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text.  The presentation is elementary, where σ-algebras are not used in the text on measure theory and Dini’s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue’s theory are found in the book. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Measure theory. 
650 0 |a Functions of real variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Real Functions. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461471950 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-7196-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)