Trust-based Collective View Prediction

Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Luo, Tiejian (Συγγραφέας), Chen, Su (Συγγραφέας), Xu, Guandong (Συγγραφέας), Zhou, Jia (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03873nam a22004935i 4500
001 978-1-4614-7202-5
003 DE-He213
005 20151218041549.0
007 cr nn 008mamaa
008 130704s2013 xxu| s |||| 0|eng d
020 |a 9781461472025  |9 978-1-4614-7202-5 
024 7 |a 10.1007/978-1-4614-7202-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Luo, Tiejian.  |e author. 
245 1 0 |a Trust-based Collective View Prediction  |h [electronic resource] /  |c by Tiejian Luo, Su Chen, Guandong Xu, Jia Zhou. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 146 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- Related Work -- Collaborative Filtering -- Sentiment Analysis -- Theory Foundations -- Models, Methods and Algorithms -- Framework for Robustness Analysis -- Conclusions -- Appendix. 
520 |a Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users’ past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users’ trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies. The book consists of two main parts – a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users’ data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors. The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners to integrate these techniques into new applications. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Chen, Su.  |e author. 
700 1 |a Xu, Guandong.  |e author. 
700 1 |a Zhou, Jia.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461472018 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-7202-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)