Predicting the Future Completing Models of Observed Complex Systems /

Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information fro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Abarbanel, Henry (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03157nam a22005415i 4500
001 978-1-4614-7218-6
003 DE-He213
005 20151116121017.0
007 cr nn 008mamaa
008 130611s2013 xxu| s |||| 0|eng d
020 |a 9781461472186  |9 978-1-4614-7218-6 
024 7 |a 10.1007/978-1-4614-7218-6  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PHS  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Abarbanel, Henry.  |e author. 
245 1 0 |a Predicting the Future  |h [electronic resource] :  |b Completing Models of Observed Complex Systems /  |c by Henry Abarbanel. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 238 p. 97 illus., 91 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a Preface -- 1 An Overview; The Challenge of Complex Systems -- 2 Examples as a Guide to the Issues -- 3 General Formulation of Statistical Data Assimilation -- 4 Evaluating the Path Integral -- 5 Twin Experiments -- 6 Analysis of Experimental Data. 
520 |a Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and other systematic investigations of complex systems. 
650 0 |a Physics. 
650 0 |a Neurosciences. 
650 0 |a Computer simulation. 
650 0 |a System theory. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Complex Systems. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Neurosciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461472179 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-7218-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)