Statistical Methods for Dynamic Treatment Regimes Reinforcement Learning, Causal Inference, and Personalized Medicine /
Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Σειρά: | Statistics for Biology and Health,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- The Data: Observational Studies and Sequentially Randomized Trials
- Statistical Reinforcement Learning
- Estimation of Optimal DTRs by Modeling Contrasts of Conditional Mean Outcomes
- Estimation of Optimal DTRs by Directly Modeling Regimes
- G-computation: Parametric Estimation of Optimal DTRs
- Estimation DTRs for Alternative Outcome Types
- Inference and Non-regularity
- Additional Considerations and Final Thoughts
- Glossary
- Index
- References.