Statistical Methods for Dynamic Treatment Regimes Reinforcement Learning, Causal Inference, and Personalized Medicine /

Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chakraborty, Bibhas (Συγγραφέας), Moodie, Erica E.M (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • The Data: Observational Studies and Sequentially Randomized Trials
  • Statistical Reinforcement Learning
  • Estimation of Optimal DTRs by Modeling Contrasts of Conditional Mean Outcomes
  • Estimation of Optimal DTRs by Directly Modeling Regimes
  • G-computation: Parametric Estimation of Optimal DTRs
  • Estimation DTRs for Alternative Outcome Types
  • Inference and Non-regularity
  • Additional Considerations and Final Thoughts
  • Glossary
  • Index
  • References.