Prolate Spheroidal Wave Functions of Order Zero Mathematical Tools for Bandlimited Approximation /

Prolate Spheroidal Wave Functions (PSWFs) are the eigenfunctions of the bandlimited operator in one dimension. As such, they play an important role in signal processing, Fourier analysis, and approximation theory. While historically the numerical evaluation of PSWFs presented serious difficulties, t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Osipov, Andrei (Συγγραφέας), Rokhlin, Vladimir (Συγγραφέας), Xiao, Hong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US : Imprint: Springer, 2013.
Σειρά:Applied Mathematical Sciences, 187
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02951nam a22005175i 4500
001 978-1-4614-8259-8
003 DE-He213
005 20151030091049.0
007 cr nn 008mamaa
008 131012s2013 xxu| s |||| 0|eng d
020 |a 9781461482598  |9 978-1-4614-8259-8 
024 7 |a 10.1007/978-1-4614-8259-8  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Osipov, Andrei.  |e author. 
245 1 0 |a Prolate Spheroidal Wave Functions of Order Zero  |h [electronic resource] :  |b Mathematical Tools for Bandlimited Approximation /  |c by Andrei Osipov, Vladimir Rokhlin, Hong Xiao. 
264 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 379 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 187 
505 0 |a Introduction -- Mathematical and Numerical Preliminaries -- Overview.- Analysis of the Differential Operator.- Analysis of the Integral Operator.- Rational Approximations of PSWFs.-Miscellaneous Properties of PSWFs.-  Asymptotic Analysis of PSWFs.- Quadrature Rules and Interpolation via PSWFs.- Numerical Algorithms .- . 
520 |a Prolate Spheroidal Wave Functions (PSWFs) are the eigenfunctions of the bandlimited operator in one dimension. As such, they play an important role in signal processing, Fourier analysis, and approximation theory. While historically the numerical evaluation of PSWFs presented serious difficulties, the developments of the last fifteen years or so made them as computationally tractable as any other class of special functions. As a result, PSWFs have been becoming a popular computational tool. The present book serves as a complete, self-contained resource for both theory and computation. It will be of interest to a wide range of scientists and engineers, from mathematicians interested in PSWF as an analytical tool to electrical engineers designing filters and antennas. 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Rokhlin, Vladimir.  |e author. 
700 1 |a Xiao, Hong.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461482581 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 187 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-8259-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)