Finance with Monte Carlo

This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore fi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shonkwiler, Ronald W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Springer Undergraduate Texts in Mathematics and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04829nam a22005175i 4500
001 978-1-4614-8511-7
003 DE-He213
005 20151204154154.0
007 cr nn 008mamaa
008 130917s2013 xxu| s |||| 0|eng d
020 |a 9781461485117  |9 978-1-4614-8511-7 
024 7 |a 10.1007/978-1-4614-8511-7  |2 doi 
040 |d GrThAP 
050 4 |a HB135-147 
072 7 |a KF  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Shonkwiler, Ronald W.  |e author. 
245 1 0 |a Finance with Monte Carlo  |h [electronic resource] /  |c by Ronald W. Shonkwiler. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XIX, 250 p. 70 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
505 0 |a 1. Geometric Brownian Motion and the Efficient Market Hypothesis -- 2. Return and Risk -- 3. Forward and Option Contracts and their Pricing -- 4. Pricing Exotic Options -- 5. Option Trading Strategies -- 6. Alternative to GBM Prices -- 7. Kelly's Criterion -- Appendices -- A. Some Mathematical Background Topics -- B. Stochastic Calculus -- C. Convergence of the Binomial Method -- D. Variance Reduction Techniques -- E. Shell Sort -- F. Next Day Prices Program -- References -- List of Notation -- List of Algorithms -- Index. 
520 |a This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore financial principles. Monte Carlo is the uniquely appropriate tool for modeling the random factors that drive financial markets and simulating their implications. The Monte Carlo method is introduced early and it is used in conjunction with the geometric Brownian motion model (GBM) to illustrate and analyze the topics covered in the remainder of the text. Placing focus on Monte Carlo methods allows for students to travel a short road from theory to practical applications. Coverage includes investment science, mean-variance portfolio theory, option pricing principles, exotic options, option trading strategies, jump diffusion and exponential Lévy alternative models, and the Kelly criterion for maximizing investment growth. Novel features: inclusion of both portfolio theory and contingent claim analysis in a single text pricing methodology for exotic options expectation analysis of option trading strategies pricing models that transcend the Black–Scholes framework optimizing investment allocations concepts thoroughly explored through numerous simulation exercises numerous worked examples and illustrations The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. Also by the author: (with F. Mendivil) Explorations in Monte Carlo, ©2009, ISBN: 978-0-387-87836-2; (with J. Herod) Mathematical Biology: An Introduction with Maple and Matlab, Second edition, ©2009, ISBN: 978-0-387-70983-3. 
650 0 |a Mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461485100 
830 0 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-8511-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)