Statistical Modeling and Computation

This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kroese, Dirk P. (Συγγραφέας), C.C. Chan, Joshua (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03060nam a22004335i 4500
001 978-1-4614-8775-3
003 DE-He213
005 20151204151354.0
007 cr nn 008mamaa
008 131114s2014 xxu| s |||| 0|eng d
020 |a 9781461487753  |9 978-1-4614-8775-3 
024 7 |a 10.1007/978-1-4614-8775-3  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Kroese, Dirk P.  |e author. 
245 1 0 |a Statistical Modeling and Computation  |h [electronic resource] /  |c by Dirk P. Kroese, Joshua C.C. Chan. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XX, 400 p. 114 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Probability Models -- Random Variables and Probability Distributions -- Joint Distributions -- Common Statistical Models -- Statistical Inference -- Likelihood -- Monte Carlo Sampling -- Bayesian Inference -- Generalized Linear Models -- Dependent Data Models -- State Space Models -- References -- Solutions -- MATLAB Primer -- Mathematical Supplement -- Index. 
520 |a This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a C.C. Chan, Joshua.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461487746 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-8775-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)