Set Theory With an Introduction to Real Point Sets /

What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dasgupta, Abhijit (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04620nam a22005535i 4500
001 978-1-4614-8854-5
003 DE-He213
005 20151123194327.0
007 cr nn 008mamaa
008 131207s2014 xxu| s |||| 0|eng d
020 |a 9781461488545  |9 978-1-4614-8854-5 
024 7 |a 10.1007/978-1-4614-8854-5  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Dasgupta, Abhijit.  |e author. 
245 1 0 |a Set Theory  |h [electronic resource] :  |b With an Introduction to Real Point Sets /  |c by Abhijit Dasgupta. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XV, 444 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Preliminaries: Sets, Relations, and Functions -- Part I Dedekind: Numbers -- 2 The Dedekind–Peano Axioms -- 3 Dedekind’s Theory of the Continuum -- 4 Postscript I: What Exactly Are the Natural Numbers? -- Part II Cantor: Cardinals, Order, and Ordinals -- 5 Cardinals: Finite, Countable, and Uncountable -- 6 Cardinal Arithmetic and the Cantor Set -- 7 Orders and Order Types -- 8 Dense and Complete Orders -- 9 Well-Orders and Ordinals -- 10 Alephs, Cofinality, and the Axiom of Choice -- 11 Posets, Zorn’s Lemma, Ranks, and Trees -- 12 Postscript II: Infinitary Combinatorics -- Part III Real Point Sets -- 13 Interval Trees and Generalized Cantor Sets -- 14 Real Sets and Functions -- 15 The Heine–Borel and Baire Category Theorems -- 16 Cantor–Bendixson Analysis of Countable Closed Sets -- 17 Brouwer’s Theorem and Sierpinski’s Theorem -- 18 Borel and Analytic Sets -- 19 Postscript III: Measurability and Projective Sets -- Part IV Paradoxes and Axioms -- 20 Paradoxes and Resolutions -- 21 Zermelo–Fraenkel System and von Neumann Ordinals -- 22 Postscript IV: Landmarks of Modern Set Theory -- Appendices -- A Proofs of Uncountability of the Reals -- B Existence of Lebesgue Measure -- C List of ZF Axioms -- References -- List of Symbols and Notations -- Index. 
520 |a What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals. Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study. 
650 0 |a Mathematics. 
650 0 |a Logic. 
650 0 |a Algebra. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Mathematical logic. 
650 0 |a Topology. 
650 0 |a Discrete mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Analysis. 
650 2 4 |a Algebra. 
650 2 4 |a Topology. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Logic. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461488538 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-8854-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)