Topics in Matroid Theory

Topics in Matroid Theory provides a brief introduction to matroid theory with an emphasis on algorithmic consequences.Matroid theory is at the heart of combinatorial optimization and has attracted various pioneers such as Edmonds, Tutte, Cunningham and Lawler among others. Matroid theory encompasses...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pitsoulis, Leonidas S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02885nam a22005295i 4500
001 978-1-4614-8957-3
003 DE-He213
005 20151116135200.0
007 cr nn 008mamaa
008 131023s2014 xxu| s |||| 0|eng d
020 |a 9781461489573  |9 978-1-4614-8957-3 
024 7 |a 10.1007/978-1-4614-8957-3  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Pitsoulis, Leonidas S.  |e author. 
245 1 0 |a Topics in Matroid Theory  |h [electronic resource] /  |c by Leonidas S. Pitsoulis. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 127 p. 46 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2190-8354 
505 0 |a 1.Introduction -- 2.Graph Theory, Vector Spaces and Transversals -- 3.Definition of Matroids -- 4.Representability, Duality, Minors, and Connectivity -- 5. Decomposition of Graphic Matroids -- 6.Signed-Graphic Matroids -- List of Symbols -- Index. 
520 |a Topics in Matroid Theory provides a brief introduction to matroid theory with an emphasis on algorithmic consequences.Matroid theory is at the heart of combinatorial optimization and has attracted various pioneers such as Edmonds, Tutte, Cunningham and Lawler among others. Matroid theory encompasses matrices, graphs and other combinatorial entities under a common, solid algebraic framework, thereby providing the analytical tools to solve related difficult algorithmic problems. The monograph contains a rigorous axiomatic definition of matroids along with other necessary concepts such as duality, minors, connectivity and representability as demonstrated in matrices, graphs and transversals. The author also presents a deep decomposition result in matroid theory that provides  a structural characterization of graphic matroids, and show how this can be extended to signed-graphic matroids, as well as the immediate algorithmic consequences.  . 
650 0 |a Mathematics. 
650 0 |a Algorithms. 
650 0 |a Geometry. 
650 0 |a Mathematical optimization. 
650 0 |a Combinatorics. 
650 0 |a Graph theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Continuous Optimization. 
650 2 4 |a Algorithms. 
650 2 4 |a Combinatorics. 
650 2 4 |a Graph Theory. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461489566 
830 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-8957-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)