Two-Person Zero-Sum Games

Two-person zero-sum game theory deals with situations that are perfectly competitive—there are exactly two decision makers for whom there is no possibility of cooperation or compromise. It is the most fundamental part of game theory, and the part most commonly applied. There are diverse applications...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Washburn, Alan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US : Imprint: Springer, 2014.
Έκδοση:4th ed. 2014.
Σειρά:International Series in Operations Research & Management Science, 201
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03518nam a22005175i 4500
001 978-1-4614-9050-0
003 DE-He213
005 20151204145447.0
007 cr nn 008mamaa
008 131128s2014 xxu| s |||| 0|eng d
020 |a 9781461490500  |9 978-1-4614-9050-0 
024 7 |a 10.1007/978-1-4614-9050-0  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Washburn, Alan.  |e author. 
245 1 0 |a Two-Person Zero-Sum Games  |h [electronic resource] /  |c by Alan Washburn. 
250 |a 4th ed. 2014. 
264 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 199 p. 62 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 201 
505 0 |a Single Person Background -- Maxmin Versus Minmax -- Matrix Games -- Markov (Multistage) Games -- Games with a Continuum of Strategies -- Blotto Games -- Network Interdiction -- Search Games -- Miscellaneous Games. 
520 |a Two-person zero-sum game theory deals with situations that are perfectly competitive—there are exactly two decision makers for whom there is no possibility of cooperation or compromise. It is the most fundamental part of game theory, and the part most commonly applied. There are diverse applications to military battles, sports, parlor games, economics and politics. The theory was born in World War II, and has by now matured into a significant and tractable body of knowledge about competitive decision making. The advent of modern, powerful computers has enabled the solution of many games that were once beyond computational reach. Two-Person Zero-Sum Games, 4th Ed. offers an up-to-date introduction to the subject, especially its computational aspects. Any finite game can be solved by the brute force method of enumerating all possible strategies and then applying linear programming. The trouble is that many interesting games have far too many strategies to enumerate, even with the aid of computers. After introducing ideas, terminology, and the brute force method in the initial chapters, the rest of the book is devoted to classes of games that can be solved without enumerating every strategy. Numerous examples are given, as well as an extensive set of exercises. Many of the exercises are keyed to sheets of an included Excel workbook that can be freely downloaded from the SpringerExtras website. This new edition can be used as either a reference book or as a textbook. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operations Research, Management Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461490494 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 201 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-9050-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)