Introduction to Stochastic Integration

A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability.   Usin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chung, K.L (Συγγραφέας), Williams, R.J (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2014.
Έκδοση:2nd ed. 2014.
Σειρά:Modern Birkhäuser Classics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03599nam a22004815i 4500
001 978-1-4614-9587-1
003 DE-He213
005 20151204164755.0
007 cr nn 008mamaa
008 131109s2014 xxu| s |||| 0|eng d
020 |a 9781461495871  |9 978-1-4614-9587-1 
024 7 |a 10.1007/978-1-4614-9587-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Chung, K.L.  |e author. 
245 1 0 |a Introduction to Stochastic Integration  |h [electronic resource] /  |c by K.L. Chung, R.J. Williams. 
250 |a 2nd ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XVII, 276 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics,  |x 2197-1803 
505 0 |a 1 Preliminaries -- 2 Definition of the Stochastic Integral -- 3 Extension of the Predictable Integrands -- 4 Quadratic Variation Process -- 5 The Ito Formula -- 6 Applications of the Ito Formula -- 7 Local Time and Tanaka's Formula -- 8 Reflected Brownian Motions -- 9 Generalization Ito Formula, Change of Time and Measure -- 10 Stochastic Differential Equations -- References -- Index. 
520 |a A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability.   Using the modern approach, the stochastic integral is defined for predictable integrands and local martingales; then Itô’s change of variable formula is developed for continuous martingales. Applications include a characterization of Brownian motion, Hermite polynomials of martingales, the Feynman–Kac functional and the Schrödinger equation. For Brownian motion, the topics of local time, reflected Brownian motion, and time change are discussed.   New to the second edition are a discussion of the Cameron–Martin–Girsanov transformation and a final chapter which provides an introduction to stochastic differential equations, as well as many exercises for classroom use.   This book will be a valuable resource to all mathematicians, statisticians, economists, and engineers employing the modern tools of stochastic analysis.   The text also proves that stochastic integration has made an important impact on mathematical progress over the last decades and that stochastic calculus has become one of the most powerful tools in modern probability theory. —Journal of the American Statistical Association     An attractive text…written in [a] lean and precise style…eminently readable. Especially pleasant are the care and attention devoted to details… A very fine book. —Mathematical Reviews  . 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Williams, R.J.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461495864 
830 0 |a Modern Birkhäuser Classics,  |x 2197-1803 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-9587-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)