Predictive Analytics with Microsoft Azure Machine Learning Build and Deploy Actionable Solutions in Minutes /

Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Busi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Barga, Roger (Συγγραφέας), Fontama, Valentine (Συγγραφέας), Tok, Wee Hyong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03147nam a22004335i 4500
001 978-1-4842-0445-0
003 DE-He213
005 20141125080219.0
007 cr nn 008mamaa
008 141125s2014 xxu| s |||| 0|eng d
020 |a 9781484204450  |9 978-1-4842-0445-0 
024 7 |a 10.1007/978-1-4842-0445-0  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a UMT  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
100 1 |a Barga, Roger.  |e author. 
245 1 0 |a Predictive Analytics with Microsoft Azure Machine Learning  |h [electronic resource] :  |b Build and Deploy Actionable Solutions in Minutes /  |c by Roger Barga, Valentine Fontama, Wee Hyong Tok. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2014. 
300 |a XVI, 188 p. 116 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft. 
650 0 |a Computer science. 
650 0 |a Database management. 
650 1 4 |a Computer Science. 
650 2 4 |a Database Management. 
700 1 |a Fontama, Valentine.  |e author. 
700 1 |a Tok, Wee Hyong.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484204467 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-0445-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)