Predictive Analytics with Microsoft Azure Machine Learning

Predictive Analytics with Microsoft Azure Machine Learning, Second Edition is a practical tutorial introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book provides a thorough overview of the Microsoft Azure Machine Learning s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Barga, Roger (Συγγραφέας), Fontama, Valentine (Συγγραφέας), Tok, Wee Hyong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2015.
Έκδοση:Second Edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02739nam a22004455i 4500
001 978-1-4842-1200-4
003 DE-He213
005 20151010011136.0
007 cr nn 008mamaa
008 150826s2015 xxu| s |||| 0|eng d
020 |a 9781484212004  |9 978-1-4842-1200-4 
024 7 |a 10.1007/978-1-4842-1200-4  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Barga, Roger.  |e author. 
245 1 0 |a Predictive Analytics with Microsoft Azure Machine Learning  |h [electronic resource] /  |c by Roger Barga, Valentine Fontama, Wee Hyong Tok. 
250 |a Second Edition. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2015. 
300 |a XXIII, 291 p. 227 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Predictive Analytics with Microsoft Azure Machine Learning, Second Edition is a practical tutorial introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book provides a thorough overview of the Microsoft Azure Machine Learning service released for general availability on February 18th, 2015 with practical guidance for building recommenders, propensity models, and churn and predictive maintenance models. The authors use task oriented descriptions and concrete end-to-end examples to ensure that the reader can immediately begin using this new service. The book describes all aspects of the service from data ingress to applying machine learning, evaluating the models, and deploying them as web services. Learn how you can quickly build and deploy sophisticated predictive models with the new Azure Machine Learning from Microsoft. What’s New in the Second Edition? Five new chapters have been added with practical detailed coverage of: Python Integration – a new feature announced February 2015 Data preparation and feature selection Data visualization with Power BI Recommendation engines Selling your models on Azure Marketplace. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Science, general. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Fontama, Valentine.  |e author. 
700 1 |a Tok, Wee Hyong.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484212011 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-1200-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)