Text Analytics with Python A Practical Real-World Approach to Gaining Actionable Insights from your Data /

Derive useful insights from your data using Python. Learn the techniques related to natural language processing and text analytics, and gain the skills to know which technique is best suited to solve a particular problem. Text Analytics with Python teaches you both basic and advanced concepts, inclu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sarkar, Dipanjan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03433nam a22004215i 4500
001 978-1-4842-2388-8
003 DE-He213
005 20161130112528.0
007 cr nn 008mamaa
008 161130s2016 xxu| s |||| 0|eng d
020 |a 9781484223888  |9 978-1-4842-2388-8 
024 7 |a 10.1007/978-1-4842-2388-8  |2 doi 
040 |d GrThAP 
100 1 |a Sarkar, Dipanjan.  |e author. 
245 1 0 |a Text Analytics with Python  |h [electronic resource] :  |b A Practical Real-World Approach to Gaining Actionable Insights from your Data /  |c by Dipanjan Sarkar. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2016. 
300 |a XXI, 385 p. 54 illus., 33 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1:Natural Language Basics -- Chapter 2:Python Refresher for Text Analytics -- Chapter 3:Text Processing -- Chapter 4:Text Classification -- Chapter 5:Text summarization and topic modeling -- Chapter 6:Text Clustering and Similarity analysis -- Chapter 7:Sentiment Analysis.-. 
520 |a Derive useful insights from your data using Python. Learn the techniques related to natural language processing and text analytics, and gain the skills to know which technique is best suited to solve a particular problem. Text Analytics with Python teaches you both basic and advanced concepts, including text and language syntax, structure, semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. A structured and comprehensive approach is followed in this book so that readers with little or no experience do not find themselves overwhelmed. You will start with the basics of natural language and Python and move on to advanced analytical and machine learning concepts. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. This book: Provides complete coverage of the major concepts and techniques of natural language processing (NLP) and text analytics Includes practical real-world examples of techniques for implementation, such as building a text classification system to categorize news articles, analyzing app or game reviews using topic modeling and text summarization, and clustering popular movie synopses and analyzing the sentiment of movie reviews Shows implementations based on Python and several popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern. 
650 0 |a Computer science. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Database management. 
650 0 |a Data mining. 
650 1 4 |a Computer Science. 
650 2 4 |a Big Data. 
650 2 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484223871 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-2388-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)