Beginning Data Science in R Data Analysis, Visualization, and Modelling for the Data Scientist /

Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Data Science...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mailund, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03287nam a22004935i 4500
001 978-1-4842-2671-1
003 DE-He213
005 20170309142020.0
007 cr nn 008mamaa
008 170309s2017 xxu| s |||| 0|eng d
020 |a 9781484226711  |9 978-1-4842-2671-1 
024 7 |a 10.1007/978-1-4842-2671-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Mailund, Thomas.  |e author. 
245 1 0 |a Beginning Data Science in R  |h [electronic resource] :  |b Data Analysis, Visualization, and Modelling for the Data Scientist /  |c by Thomas Mailund. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2017. 
300 |a XXVII, 352 p. 100 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Introduction to R programming -- 2. Reproducible analysis -- 3. Data manipulation -- 4. Visualizing and exploring data -- 5. Working with large data sets -- 6. Supervised learning -- 7. Unsupervised learning -- 8. More R programming -- 9. Advanced R programming -- 10. Object oriented programming -- 11. Building an R package -- 12. Testing and checking -- 13. Version control -- 14. Profiling and optimizing. 
520 |a Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You’ll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming. You will: Perform data science and analytics using statistics and the R programming language Visualize and explore data, including working with large data sets found in big data Build an R package Test and check your code Practice version control Profile and optimize your code. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Data mining. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Big Data. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Data-driven Science, Modeling and Theory Building. 
650 2 4 |a Programming Techniques. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484226704 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-2671-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)