Introduction to Deep Learning Using R A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R /

Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Lea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Beysolow II, Taweh (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03460nam a22004575i 4500
001 978-1-4842-2734-3
003 DE-He213
005 20170720081451.0
007 cr nn 008mamaa
008 170720s2017 xxu| s |||| 0|eng d
020 |a 9781484227343  |9 978-1-4842-2734-3 
024 7 |a 10.1007/978-1-4842-2734-3  |2 doi 
040 |d GrThAP 
050 4 |a HF5548.125-HF5548.6 
072 7 |a KJQ  |2 bicssc 
072 7 |a BUS070030  |2 bisacsh 
082 0 4 |a 658.4038  |2 23 
100 1 |a Beysolow II, Taweh.  |e author. 
245 1 0 |a Introduction to Deep Learning Using R  |h [electronic resource] :  |b A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R /  |c by Taweh Beysolow II. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2017. 
300 |a XIX, 227 p. 106 illus., 53 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: What is Deep Learning? -- Chapter 2: Mathematical Review -- Chapter 3: A Review of Optimization and Machine Learning -- Chapter 4: Single and Multi-Layer Perceptron Models -- Chapter 5: Convolutional Neural Networks (CNNs) -- Chapter 6: Recurrent Neural Networks (RNNs) -- Chapter 7: Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks -- Chapter 8: Experimental Design and Heuristics -- Chapter 9: Deep Learning and Machine Learning Hardware/Software Suggestions -- Chapter 10: Machine Learning Example Problems -- Chapter 11: Deep Learning and Other Example Problems -- Chapter 12: Closing Statements.-. 
520 |a Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You Will Learn: • Understand the intuition and mathematics that power deep learning models • Utilize various algorithms using the R programming language and its packages • Use best practices for experimental design and variable selection • Practice the methodology to approach and effectively solve problems as a data scientist • Evaluate the effectiveness of algorithmic solutions and enhance their predictive power. 
650 0 |a Business. 
650 0 |a Big data. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Computers. 
650 1 4 |a Business and Management. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484227336 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-2734-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-BUM 
950 |a Business and Management (Springer-41169)