Practical Concurrent Haskell With Big Data Applications /

Learn to use the APIs and frameworks for parallel and concurrent applications in Haskell. This book will show you how to exploit multicore processors with the help of parallelism in order to increase the performance of your applications.  Practical Concurrent Haskell teaches you how concurrency enab...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Nita, Stefania Loredana (Συγγραφέας), Mihailescu, Marius (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02777nam a22004695i 4500
001 978-1-4842-2781-7
003 DE-He213
005 20170916033228.0
007 cr nn 008mamaa
008 170914s2017 xxu| s |||| 0|eng d
020 |a 9781484227817  |9 978-1-4842-2781-7 
024 7 |a 10.1007/978-1-4842-2781-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.7-76.73 
050 4 |a QA76.76.C65 
072 7 |a UMX  |2 bicssc 
072 7 |a UMC  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a COM010000  |2 bisacsh 
082 0 4 |a 005.13  |2 23 
100 1 |a Nita, Stefania Loredana.  |e author. 
245 1 0 |a Practical Concurrent Haskell  |h [electronic resource] :  |b With Big Data Applications /  |c by Stefania Loredana Nita, Marius Mihailescu. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2017. 
300 |a XV, 266 p. 26 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Learn to use the APIs and frameworks for parallel and concurrent applications in Haskell. This book will show you how to exploit multicore processors with the help of parallelism in order to increase the performance of your applications.  Practical Concurrent Haskell teaches you how concurrency enables you to write programs using threads for multiple interactions. After accomplishing this, you will be ready to make your move into application development and portability with applications in cloud computing and big data.  You'll use MapReduce and other, similar big data tools as part of your Haskell big data applications development.   What You'll Learn Program with Haskell Harness concurrency to Haskell Apply Haskell to big data and cloud computing applications Use Haskell concurrency design patterns in big data Accomplish iterative data processing on big data using Haskell Use MapReduce and work with Haskell on large clusters Who This Book Is For Those with at least some prior experience with Haskell and some prior experience with big data in another programming language such as Java, C#, Python, or C++. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Programming languages (Electronic computers). 
650 1 4 |a Computer Science. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Programming Techniques. 
700 1 |a Mihailescu, Marius.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484227800 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-2781-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)