Python Machine Learning Case Studies Five Case Studies for the Data Scientist /

Embrace machine learning approaches and Python to enable automatic rendering of rich insights. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Haroon, Danish (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03119nam a22005175i 4500
001 978-1-4842-2823-4
003 DE-He213
005 20171028172746.0
007 cr nn 008mamaa
008 171028s2017 xxu| s |||| 0|eng d
020 |a 9781484228234  |9 978-1-4842-2823-4 
024 7 |a 10.1007/978-1-4842-2823-4  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UMA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM018000  |2 bisacsh 
082 0 4 |a 006  |2 23 
100 1 |a Haroon, Danish.  |e author. 
245 1 0 |a Python Machine Learning Case Studies  |h [electronic resource] :  |b Five Case Studies for the Data Scientist /  |c by Danish Haroon. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2017. 
300 |a XVII, 204 p. 120 illus., 99 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1:  Statistics and Probability -- Chapter 2:  Regression -- Chapter 3: Time series models -- Chapter 4: Classification and Clustering -- Chapter 5: Ensemble methods. 
520 |a Embrace machine learning approaches and Python to enable automatic rendering of rich insights. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources. Python Machine Learning Case Study takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You’ll see machine learning techniques that you can use to support your products and services. Moreover you’ll learn the pros and cons of each of the machine learning concepts presented. By taking a step-by-step approach to coding in Python you’ll be able to understand the rationale behind model selection and decisions within the machine learning process. The book is equipped with practical examples along with code snippets to ensure th at you understand the data science approach to solving real-world problems. You will: Gain insights into machine learning concepts  Work on real-world applications of machine learning Get a hands-on overview to Python from a machine learning point of view. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Database management. 
650 0 |a Computers. 
650 1 4 |a Computer Science. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Python. 
650 2 4 |a Big Data. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Database Management. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484228227 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-2823-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)