Advanced R Statistical Programming and Data Models Analysis, Machine Learning, and Visualization /

Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples us...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wiley, Matt (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Wiley, Joshua F. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03945nam a2200505 4500
001 978-1-4842-2872-2
003 DE-He213
005 20191027142101.0
007 cr nn 008mamaa
008 190220s2019 xxu| s |||| 0|eng d
020 |a 9781484228722  |9 978-1-4842-2872-2 
024 7 |a 10.1007/978-1-4842-2872-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.7-76.73 
050 4 |a QA76.76.C65 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a UMX  |2 thema 
072 7 |a UMC  |2 thema 
082 0 4 |a 005.13  |2 23 
100 1 |a Wiley, Matt.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced R Statistical Programming and Data Models  |h [electronic resource] :  |b Analysis, Machine Learning, and Visualization /  |c by Matt Wiley, Joshua F. Wiley. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XX, 638 p. 207 illus., 127 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Univariate Data Visualization -- 2 Multivariate Data Visualization -- 3 Generalized Linear Models 1 -- 4 Generalized Linear Models 2 -- 5 Generalized Additive Models -- 6 Machine Learning: Introduction -- 7 Machine Learning: Unsupervised -- 8 Machine Learning: Supervised -- 9 Missing Data -- 10 Generalized Linear Mixed Models: Introduction -- 11 Generalized Linear Mixed Models: Linear -- 12 Generalized Linear Mixed Models: Advanced -- 13 Modeling IIV -- Bibliography. 
520 |a Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You'll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. You will: Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification Address missing data using multiple imputation in R Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability . 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Computer programming. 
650 0 |a Mathematical statistics. 
650 1 4 |a Programming Languages, Compilers, Interpreters.  |0 http://scigraph.springernature.com/things/product-market-codes/I14037 
650 2 4 |a Programming Techniques.  |0 http://scigraph.springernature.com/things/product-market-codes/I14010 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
700 1 |a Wiley, Joshua F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484228715 
776 0 8 |i Printed edition:  |z 9781484228739 
856 4 0 |u https://doi.org/10.1007/978-1-4842-2872-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)