Pro Deep Learning with TensorFlow A Mathematical Approach to Advanced Artificial Intelligence in Python /

Deploy deep learning solutions in production with ease using TensorFlow. You'll also develop the mathematical understanding and intuition required to invent new deep learning architectures and solutions on your own. Pro Deep Learning with TensorFlow provides practical, hands-on expertise so you...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pattanayak, Santanu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03146nam a22004455i 4500
001 978-1-4842-3096-1
003 DE-He213
005 20171206164848.0
007 cr nn 008mamaa
008 171206s2017 xxu| s |||| 0|eng d
020 |a 9781484230961  |9 978-1-4842-3096-1 
024 7 |a 10.1007/978-1-4842-3096-1  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UMA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM018000  |2 bisacsh 
082 0 4 |a 006  |2 23 
100 1 |a Pattanayak, Santanu.  |e author. 
245 1 0 |a Pro Deep Learning with TensorFlow  |h [electronic resource] :  |b A Mathematical Approach to Advanced Artificial Intelligence in Python /  |c by Santanu Pattanayak. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2017. 
300 |a XXI, 398 p. 189 illus., 87 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Mathematical Foundations -- Chapter 2: Introduction to Deep Learning Concepts and TensorFlow -- Chapter 3: Convolutional Neural Networks -- Chapter 4: Natural Language Processing Using Recursive Neural Networks -- Chapter 5: Unsupervised Learning with Restricted Boltzmann Machines and Auto Encoders -- Chapter 6: Advanced Neural Networks. 
520 |a Deploy deep learning solutions in production with ease using TensorFlow. You'll also develop the mathematical understanding and intuition required to invent new deep learning architectures and solutions on your own. Pro Deep Learning with TensorFlow provides practical, hands-on expertise so you can learn deep learning from scratch and deploy meaningful deep learning solutions. This book will allow you to get up to speed quickly using TensorFlow and to optimize different deep learning architectures. All of the practical aspects of deep learning that are relevant in any industry are emphasized in this book. You will be able to use the prototypes demonstrated to build new deep learning applications. The code presented in the book is available in the form of iPython notebooks and scripts which allow you to try out examples and extend them in interesting ways. You will be equipped with the mathematical foundation and scientific knowledge to pursue research in this field and give back to the community.  What You'll Learn: Understand full stack deep learning using TensorFlow and gain a solid mathematical foundation for deep learning Deploy complex deep learning solutions in production using TensorFlow Carry out research on deep learning and perform experiments using TensorFlow. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 1 4 |a Computer Science. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Big Data. 
650 2 4 |a Python. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484230954 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-3096-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)