PySpark Recipes A Problem-Solution Approach with PySpark2 /

Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark R...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mishra, Raju Kumar (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03272nam a2200505 4500
001 978-1-4842-3141-8
003 DE-He213
005 20191029022008.0
007 cr nn 008mamaa
008 171209s2018 xxu| s |||| 0|eng d
020 |a 9781484231418  |9 978-1-4842-3141-8 
024 7 |a 10.1007/978-1-4842-3141-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Mishra, Raju Kumar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a PySpark Recipes  |h [electronic resource] :  |b A Problem-Solution Approach with PySpark2 /  |c by Raju Kumar Mishra. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XXIII, 265 p. 47 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: The Era of Big Data, Hadoop, and Other Big Data Processing Frameworks -- Chapter 2: Installation -- Chapter 3: Introduction to Python and NumPy -- Chapter 4: Spark Architecture and Resilient Distributed Dataset -- Chapter 5: The Power of Pairs: Paired RDD -- Chapter 6: IO in PySpark -- Chapter 7: Optimizing PySpark and PySpark Streaming -- Chapter 8: PySparkSQL -- Chapter 9: PySpark MLlib and Linear Regression. 
520 |a Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model. What You Will Learn: Understand the advanced features of PySpark and SparkSQL Optimize your code Program SparkSQL with Python Use Spark Streaming and Spark MLlib with Python Perform graph analysis with GraphFrames. 
650 0 |a Big data. 
650 0 |a Computer programming. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Data mining. 
650 1 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Programming Techniques.  |0 http://scigraph.springernature.com/things/product-market-codes/I14010 
650 2 4 |a Programming Languages, Compilers, Interpreters.  |0 http://scigraph.springernature.com/things/product-market-codes/I14037 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484231401 
776 0 8 |i Printed edition:  |z 9781484231425 
776 0 8 |i Printed edition:  |z 9781484247235 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3141-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)