Functional Data Structures in R Advanced Statistical Programming in R /

Get an introduction to functional data structures using R and write more effective code and gain performance for your programs. This book teaches you workarounds because data in functional languages is not mutable: for example you’ll learn how to change variable-value bindings by modifying environme...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mailund, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03105nam a22004695i 4500
001 978-1-4842-3144-9
003 DE-He213
005 20171117184412.0
007 cr nn 008mamaa
008 171117s2017 xxu| s |||| 0|eng d
020 |a 9781484231449  |9 978-1-4842-3144-9 
024 7 |a 10.1007/978-1-4842-3144-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.6-76.66 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
082 0 4 |a 005.11  |2 23 
100 1 |a Mailund, Thomas.  |e author. 
245 1 0 |a Functional Data Structures in R  |h [electronic resource] :  |b Advanced Statistical Programming in R /  |c by Thomas Mailund. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2017. 
300 |a XII, 256 p. 57 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Get an introduction to functional data structures using R and write more effective code and gain performance for your programs. This book teaches you workarounds because data in functional languages is not mutable: for example you’ll learn how to change variable-value bindings by modifying environments, which can be exploited to emulate pointers and implement traditional data structures. You’ll also see how, by abandoning traditional data structures, you can manipulate structures by building new versions rather than modifying them. You’ll discover how these so-called functional data structures are different from the traditional data structures you might know, but are worth understanding to do serious algorithmic programming in a functional language such as R. By the end of Functional Data Structures in R, you’ll understand the choices to make in order to most effectively work with data structures when you cannot modify the data itself. These techniques are especially applicable for algorithmic development important in big data, finance, and other data science applications. You will: Carry out algorithmic programming in R  Use abstract data structures  Work with both immutable and persistent data  Emulate pointers and implement traditional data structures in R Implement data structures in C/C++ with some wrapper code in R Build new versions of traditional data structures that are known. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Data structures (Computer science). 
650 0 |a Mathematical statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Data Structures. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Probability and Statistics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484231432 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4842-3144-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)