Assessing and Improving Prediction and Classification Theory and Algorithms in C++ /

Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committee...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Masters, Timothy (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03525nam a2200505 4500
001 978-1-4842-3336-8
003 DE-He213
005 20191025032504.0
007 cr nn 008mamaa
008 171220s2018 xxu| s |||| 0|eng d
020 |a 9781484233368  |9 978-1-4842-3336-8 
024 7 |a 10.1007/978-1-4842-3336-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Masters, Timothy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Assessing and Improving Prediction and Classification  |h [electronic resource] :  |b Theory and Algorithms in C++ /  |c by Timothy Masters. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XX, 517 p. 26 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Assessment of Numeric Predictions -- 2. Assessment of Class Predictions -- 3. Resampling for Assessing Parameter Estimates -- 4. Resampling for Assessing Prediction and Classification -- 5. Miscellaneous Resampling Techniques -- 6. Combining Numeric Predictions -- 7. Combining Classification Models -- 8. Gaiting Methods -- 9. Information and Entropy -- References. 
520 |a Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics. 
650 0 |a Statistics . 
650 1 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
650 2 4 |a Statistics, general.  |0 http://scigraph.springernature.com/things/product-market-codes/S0000X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484233351 
776 0 8 |i Printed edition:  |z 9781484233375 
776 0 8 |i Printed edition:  |z 9781484247129 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3336-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)