Assessing and Improving Prediction and Classification Theory and Algorithms in C++ /
Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committee...
Κύριος συγγραφέας: | Masters, Timothy (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berkeley, CA :
Apress : Imprint: Apress,
2018.
|
Έκδοση: | 1st ed. 2018. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Deep Belief Nets in C++ and CUDA C: Volume 2 Autoencoding in the Complex Domain /
ανά: Masters, Timothy, κ.ά.
Έκδοση: (2018) -
Deep Belief Nets in C++ and CUDA C: Volume 3 Convolutional Nets /
ανά: Masters, Timothy, κ.ά.
Έκδοση: (2018) -
Deep Belief Nets in C++ and CUDA C: Volume 1 Restricted Boltzmann Machines and Supervised Feedforward Networks /
ανά: Masters, Timothy, κ.ά.
Έκδοση: (2018) -
CABology: Value of Cloud, Analytics and Big Data Trio Wave
ανά: Upadhyay, Nitin, κ.ά.
Έκδοση: (2018) -
Data Science and Predictive Analytics Biomedical and Health Applications using R /
ανά: Dinov, Ivo D., κ.ά.
Έκδοση: (2018)