Building Intelligent Systems A Guide to Machine Learning Engineering /

Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to appl...

Full description

Bibliographic Details
Main Author: Hulten, Geoff (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2018.
Edition:1st ed. 2018.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04341nam a2200457 4500
001 978-1-4842-3432-7
003 DE-He213
005 20190620081140.0
007 cr nn 008mamaa
008 180306s2018 xxu| s |||| 0|eng d
020 |a 9781484234327  |9 978-1-4842-3432-7 
024 7 |a 10.1007/978-1-4842-3432-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Hulten, Geoff.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Building Intelligent Systems  |h [electronic resource] :  |b A Guide to Machine Learning Engineering /  |c by Geoff Hulten. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XXVI, 339 p. 19 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part 1: Approaching an Intelligent System Project -- Chapter 1: Introducing Intelligent Systems -- Chapter 2: Knowing When to Use Intelligent Systems -- Chapter 3: A Brief Refresher on Working with Data -- Chapter 4: Defining the Intelligent System's Goals -- Part 2: Intelligent Experiences -- Chapter 5: The Components of Intelligent Experiences -- Chapter 6: Why Creating Intelligence Experiences Is Hard -- Chapter 7: Balancing Intelligent Experiences -- Chapter 8: Modes of Intelligent Interaction -- Chapter 9: Getting Data from Experience -- Chapter 10: Verifying Intelligent Experiences -- Part 3: Implementing Intelligence -- Chapter 11: The Components of an Intelligence Implementation -- Chapter 12: The Intelligence Runtime -- Chapter 13: Where Intelligence Lives -- Chapter 14: Intelligence Management -- Chapter 15: Intelligent Telemetry -- Part 4: Creating Intelligence -- Chapter 16: Overview of Intelligence -- Chapter 17: Representing Intelligence -- Chapter 18: The Intelligence Creation Process -- Chapter 19: Evaluating Intelligence -- Chapter 20: Machine Learning Intelligence -- Chapter 21: Organizing Intelligence -- Part 5: Orchestrating Intelligent Systems -- Chapter 22: Overview of Intelligence Orchestration -- Chapter 23: The Intelligence Orchestration Environment -- Chapter 24: Dealing with Mistakes -- Chapter 25: Adversaries and Abuse -- Chapter 26: Approaching Your Own Intelligent System -- . 
520 |a Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You'll Learn: Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want. 
650 0 |a Artificial intelligence. 
650 0 |a Big data. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484234310 
776 0 8 |i Printed edition:  |z 9781484234334 
776 0 8 |i Printed edition:  |z 9781484246368 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3432-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)