Pro Machine Learning Algorithms A Hands-On Approach to Implementing Algorithms in Python and R /

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ayyadevara, V Kishore (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1: Basics of Machine Learning
  • Chapter 2: Linear regression
  • Chapter 3: Logistic regression
  • Chapter 4: Decision tree
  • Chapter 5: Random forest
  • Chapter 6: GBM
  • Chapter 7: Neural network
  • Chapter 8: word2vec
  • Chapter 9: Convolutional neural network
  • Chapter 10: Recurrent Neural Network
  • Chapter 11: Clustering
  • Chapter 12: PCA
  • Chapter 13: Recommender systems
  • Chapter 14: Implementing algorithms in the cloud.