Data Science Fundamentals for Python and MongoDB

Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Paper, David (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03351nam a2200457 4500
001 978-1-4842-3597-3
003 DE-He213
005 20191019191714.0
007 cr nn 008mamaa
008 180510s2018 xxu| s |||| 0|eng d
020 |a 9781484235973  |9 978-1-4842-3597-3 
024 7 |a 10.1007/978-1-4842-3597-3  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Paper, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Science Fundamentals for Python and MongoDB  |h [electronic resource] /  |c by David Paper. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XIII, 214 p. 117 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Introduction -- 2. Monte Carlo Simulation and Density Functions -- 3. Linear Algebra -- 4. Gradient Descent -- 5. Working with Data -- 6. Exploring Data. 
520 |a Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn't required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is "rocky" at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. What You'll Learn: Prepare for a career in data science Work with complex data structures in Python Simulate with Monte Carlo and Stochastic algorithms Apply linear algebra using vectors and matrices Utilize complex algorithms such as gradient descent and principal component analysis Wrangle, cleanse, visualize, and problem solve with data Use MongoDB and JSON to work with data. 
650 0 |a Big data. 
650 0 |a Python (Computer program language). 
650 1 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484235966 
776 0 8 |i Printed edition:  |z 9781484235980 
776 0 8 |i Printed edition:  |z 9781484240182 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3597-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)