Neural Networks in Unity C# Programming for Windows 10 /

Learn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. You'll then move onto activation functions, such as sigmoid...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Nandy, Abhishek (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Biswas, Manisha (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03107nam a2200481 4500
001 978-1-4842-3673-4
003 DE-He213
005 20191004021958.0
007 cr nn 008mamaa
008 180714s2018 xxu| s |||| 0|eng d
020 |a 9781484236734  |9 978-1-4842-3673-4 
024 7 |a 10.1007/978-1-4842-3673-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.76.C672 
072 7 |a UMK  |2 bicssc 
072 7 |a COM012040  |2 bisacsh 
072 7 |a UMK  |2 thema 
082 0 4 |a 794.815  |2 23 
100 1 |a Nandy, Abhishek.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neural Networks in Unity  |h [electronic resource] :  |b C# Programming for Windows 10 /  |c by Abhishek Nandy, Manisha Biswas. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XI, 158 p. 107 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Core Concepts of Neural Networks -- Chapter 2: Different types of Neural Network -- Chapter 3: Neural Network with Unity -- Chapter 4: Back propagation using Unity -- Chapter 5: Neural Network with Processing and Windows 10 UWP. 
520 |a Learn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. You'll then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial. Once you've gained the basics, you'll start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, you'll define back propagation with Unity C#, before compiling your project. You will: Discover the concepts behind neural networks Work with Unity and C# See the difference between fully connected and convolutional neural networks Master neural network processing for Windows 10 UWP. 
650 0 |a Computer games-Programming. 
650 0 |a Microsoft software. 
650 0 |a Microsoft .NET Framework. 
650 1 4 |a Game Development.  |0 http://scigraph.springernature.com/things/product-market-codes/I29040 
650 2 4 |a Microsoft and .NET.  |0 http://scigraph.springernature.com/things/product-market-codes/I29030 
700 1 |a Biswas, Manisha.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484236727 
776 0 8 |i Printed edition:  |z 9781484236741 
776 0 8 |i Printed edition:  |z 9781484247365 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3673-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)