Deep Learning for Natural Language Processing Creating Neural Networks with Python /

Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You'll start by covering the mathematical prerequisites and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Goyal, Palash (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Pandey, Sumit (http://id.loc.gov/vocabulary/relators/aut), Jain, Karan (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03682nam a2200517 4500
001 978-1-4842-3685-7
003 DE-He213
005 20191019141350.0
007 cr nn 008mamaa
008 180626s2018 xxu| s |||| 0|eng d
020 |a 9781484236857  |9 978-1-4842-3685-7 
024 7 |a 10.1007/978-1-4842-3685-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Goyal, Palash.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deep Learning for Natural Language Processing  |h [electronic resource] :  |b Creating Neural Networks with Python /  |c by Palash Goyal, Sumit Pandey, Karan Jain. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XVII, 277 p. 99 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction to NLP and Deep Learning -- Chapter 2: Word Vector representations -- Chapter 3: Unfolding Recurrent Neural Networks -- Chapter 4: Developing a Chatbot -- Chapter 5: Research Paper Implementation: Sentiment Classification. 
520 |a Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You'll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. You will: Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Open Source.  |0 http://scigraph.springernature.com/things/product-market-codes/I29090 
700 1 |a Pandey, Sumit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Jain, Karan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484236840 
776 0 8 |i Printed edition:  |z 9781484236864 
776 0 8 |i Printed edition:  |z 9781484246016 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3685-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)