Deep Belief Nets in C++ and CUDA C: Volume 3 Convolutional Nets /

Discover the essential building blocks of a common and powerful form of deep belief network: convolutional nets. This book shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a 'thought process' that is capa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Masters, Timothy (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03487nam a2200493 4500
001 978-1-4842-3721-2
003 DE-He213
005 20191220131251.0
007 cr nn 008mamaa
008 180704s2018 xxu| s |||| 0|eng d
020 |a 9781484237212  |9 978-1-4842-3721-2 
024 7 |a 10.1007/978-1-4842-3721-2  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Masters, Timothy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deep Belief Nets in C++ and CUDA C: Volume 3  |h [electronic resource] :  |b Convolutional Nets /  |c by Timothy Masters. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XII, 176 p. 13 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Feedforward Networks -- 2. Programming Algorithms -- 3. CUDA Code -- 4. CONVNET Manual. 
520 |a Discover the essential building blocks of a common and powerful form of deep belief network: convolutional nets. This book shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a 'thought process' that is capable of learning abstract concepts built from simpler primitives. These models are especially useful for image processing applications. At each step Deep Belief Nets in C++ and CUDA C: Volume 3 presents intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the executable CONVNET program which implements these algorithms, are available for free download. You will: Discover convolutional nets and how to use them Build deep feedforward nets using locally connected layers, pooling layers, and softmax outputs Master the various programming algorithms required Carry out multi-threaded gradient computations and memory allocations for this threading Work with CUDA code implementations of all core computations, including layer activations and gradient calculations Make use of the CONVNET program and manual to explore convolutional nets and case studies. 
650 0 |a Artificial intelligence. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Big data. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Programming Languages, Compilers, Interpreters.  |0 http://scigraph.springernature.com/things/product-market-codes/I14037 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484237205 
776 0 8 |i Printed edition:  |z 9781484237229 
776 0 8 |i Printed edition:  |z 9781484247105 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3721-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)