Applied Deep Learning A Case-Based Approach to Understanding Deep Neural Networks /

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a sing...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Michelucci, Umberto (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04262nam a2200517 4500
001 978-1-4842-3790-8
003 DE-He213
005 20191019141924.0
007 cr nn 008mamaa
008 180907s2018 xxu| s |||| 0|eng d
020 |a 9781484237908  |9 978-1-4842-3790-8 
024 7 |a 10.1007/978-1-4842-3790-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Michelucci, Umberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Applied Deep Learning  |h [electronic resource] :  |b A Case-Based Approach to Understanding Deep Neural Networks /  |c by Umberto Michelucci. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XXI, 410 p. 178 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction -- Chapter 2: Single Neurons -- Chapter 3: Fully connected Neural Network with more neurons -- Chapter 4: Neural networks error analysis -- Chapter 5: Dropout technique -- Chapter 6: Hyper parameters tuning -- Chapter 7: Tensorflow and optimizers (Gradient descent, Adam, momentum, etc.) -- Chapter 8: Convolutional Networks and image recognition -- Chapter 9: Recurrent Neural Networks -- Chapter 10: A practical COMPLETE example from scratch (put everything together) -- Chapter 11: Logistic regression implement from scratch in Python without libraries. . 
520 |a Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You'll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). You will: Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 0 |a Big data. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Open Source.  |0 http://scigraph.springernature.com/things/product-market-codes/I29090 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484237892 
776 0 8 |i Printed edition:  |z 9781484237915 
776 0 8 |i Printed edition:  |z 9781484247211 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3790-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)