Applied Deep Learning A Case-Based Approach to Understanding Deep Neural Networks /
Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a sing...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berkeley, CA :
Apress : Imprint: Apress,
2018.
|
Έκδοση: | 1st ed. 2018. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1: Introduction
- Chapter 2: Single Neurons
- Chapter 3: Fully connected Neural Network with more neurons
- Chapter 4: Neural networks error analysis
- Chapter 5: Dropout technique
- Chapter 6: Hyper parameters tuning
- Chapter 7: Tensorflow and optimizers (Gradient descent, Adam, momentum, etc.)
- Chapter 8: Convolutional Networks and image recognition
- Chapter 9: Recurrent Neural Networks
- Chapter 10: A practical COMPLETE example from scratch (put everything together)
- Chapter 11: Logistic regression implement from scratch in Python without libraries. .