Applied Deep Learning A Case-Based Approach to Understanding Deep Neural Networks /

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a sing...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Michelucci, Umberto (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1: Introduction
  • Chapter 2: Single Neurons
  • Chapter 3: Fully connected Neural Network with more neurons
  • Chapter 4: Neural networks error analysis
  • Chapter 5: Dropout technique
  • Chapter 6: Hyper parameters tuning
  • Chapter 7: Tensorflow and optimizers (Gradient descent, Adam, momentum, etc.)
  • Chapter 8: Convolutional Networks and image recognition
  • Chapter 9: Recurrent Neural Networks
  • Chapter 10: A practical COMPLETE example from scratch (put everything together)
  • Chapter 11: Logistic regression implement from scratch in Python without libraries. .