Machine Learning and AI for Healthcare Big Data for Improved Health Outcomes /

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You'll discover the ethical i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Panesar, Arjun (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03012nam a2200481 4500
001 978-1-4842-3799-1
003 DE-He213
005 20191018231158.0
007 cr nn 008mamaa
008 190204s2019 xxu| s |||| 0|eng d
020 |a 9781484237991  |9 978-1-4842-3799-1 
024 7 |a 10.1007/978-1-4842-3799-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Panesar, Arjun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning and AI for Healthcare   |h [electronic resource] :  |b Big Data for Improved Health Outcomes /  |c by Arjun Panesar. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XXVI, 368 p. 52 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: What is Artificial Intelligence -- Chapter 2: Data -- Chapter 3: What is Machine learning? -- Chapter 4: Machine learning in healthcare -- Chapter 5: Evaluating learning for intelligence -- Chapter 6: Ethics of intelligence -- Chapter 7: The future of healthcare -- Chapter 8: Case studies. . 
520 |a Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You'll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You'll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. 
650 0 |a Artificial intelligence. 
650 0 |a Big data. 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Open Source.  |0 http://scigraph.springernature.com/things/product-market-codes/I29090 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484237984 
776 0 8 |i Printed edition:  |z 9781484238004 
856 4 0 |u https://doi.org/10.1007/978-1-4842-3799-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)