Data Analysis and Visualization Using Python Analyze Data to Create Visualizations for BI Systems /

Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Embarak, Dr. Ossama (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03772nam a2200493 4500
001 978-1-4842-4109-7
003 DE-He213
005 20191019191041.0
007 cr nn 008mamaa
008 181120s2018 xxu| s |||| 0|eng d
020 |a 9781484241097  |9 978-1-4842-4109-7 
024 7 |a 10.1007/978-1-4842-4109-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
100 1 |a Embarak, Dr. Ossama.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Analysis and Visualization Using Python  |h [electronic resource] :  |b Analyze Data to Create Visualizations for BI Systems /  |c by Dr. Ossama Embarak. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XX, 374 p. 267 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction to data science with python -- Chapter 2: The importance of data visualization in business intelligence -- Chapter 3: Data collections structure -- Chapter 4: File I/O processing & Regular expressions -- Chapter 5: Data gathering and cleaning -- Chapter 6: Data exploring and analysis -- Chapter 7: Data visualization -- Chapter 8: Case Study. 
520 |a Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you'll get a chance to revisit the concepts you've covered so far. You will: Use Python programming techniques for data science Master data collections in Python Create engaging visualizations for BI systems Deploy effective strategies for gathering and cleaning data Integrate the Seaborn and Matplotlib plotting systems. 
650 0 |a Python (Computer program language). 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 0 |a Big data. 
650 1 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Open Source.  |0 http://scigraph.springernature.com/things/product-market-codes/I29090 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484241080 
776 0 8 |i Printed edition:  |z 9781484241103 
776 0 8 |i Printed edition:  |z 9781484246528 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4109-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)