Python for Data Mining Quick Syntax Reference

Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data anal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Porcu, Valentina (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02807nam a2200457 4500
001 978-1-4842-4113-4
003 DE-He213
005 20191019192208.0
007 cr nn 008mamaa
008 181219s2018 xxu| s |||| 0|eng d
020 |a 9781484241134  |9 978-1-4842-4113-4 
024 7 |a 10.1007/978-1-4842-4113-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
100 1 |a Porcu, Valentina.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Python for Data Mining Quick Syntax Reference  |h [electronic resource] /  |c by Valentina Porcu. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XV, 260 p. 80 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Getting Started -- 2. Introductory Notions -- 3. Basic Objects and Structures -- 4. Functions -- 5. Conditional Instructions and Writing Functions -- 6. Other Basic Concepts -- 7. Importing Files -- 8. pandas -- 9. SciPy and NumPy -- 10. Matplotlib -- 11. scikit-learn. 
520 |a Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning. . 
650 0 |a Python (Computer program language). 
650 0 |a Big data. 
650 1 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484241127 
776 0 8 |i Printed edition:  |z 9781484241141 
776 0 8 |i Printed edition:  |z 9781484247426 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4113-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)