Understanding Azure Data Factory Operationalizing Big Data and Advanced Analytics Solutions /

Improve your analytics and data platform to solve major challenges, including operationalizing big data and advanced analytics workloads on Azure. You will learn how to monitor complex pipelines, set alerts, and extend your organization's custom monitoring requirements. This book starts with an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rawat, Sudhir (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Narain, Abhishek (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03570nam a2200505 4500
001 978-1-4842-4122-6
003 DE-He213
005 20191023141703.0
007 cr nn 008mamaa
008 181218s2019 xxu| s |||| 0|eng d
020 |a 9781484241226  |9 978-1-4842-4122-6 
024 7 |a 10.1007/978-1-4842-4122-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.76.M52 
072 7 |a UMP  |2 bicssc 
072 7 |a COM051380  |2 bisacsh 
072 7 |a UMP  |2 thema 
082 0 4 |a 004.165  |2 23 
100 1 |a Rawat, Sudhir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Understanding Azure Data Factory  |h [electronic resource] :  |b Operationalizing Big Data and Advanced Analytics Solutions /  |c by Sudhir Rawat, Abhishek Narain. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XI, 368 p. 376 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction to Data Analytics -- Chapter 2: Introduction to Azure Data Factory -- Chapter 3: Data Movement -- Chapter 4: Data Transformation-I -- Chapter 5: Data Transformation-II -- Chapter 6: Monitoring -- Chapter 7: Security -- Chapter 8: Executing SSIS Packages. 
520 |a Improve your analytics and data platform to solve major challenges, including operationalizing big data and advanced analytics workloads on Azure. You will learn how to monitor complex pipelines, set alerts, and extend your organization's custom monitoring requirements. This book starts with an overview of the Azure Data Factory as a hybrid ETL/ELT orchestration service on Azure. The book then dives into data movement and the connectivity capability of Azure Data Factory. You will learn about the support for hybrid data integration from disparate sources such as on-premise, cloud, or from SaaS applications. Detailed guidance is provided on how to transform data and on control flow. Demonstration of operationalizing the pipelines and ETL with SSIS is included. You will know how to leverage Azure Data Factory to run existing SSIS packages. As you advance through the book, you will wrap up by learning how to create a single pane for end-to-end monitoring, which is a key skill in building advanced analytics and big data pipelines. What You'll Learn: Understand data integration on Azure cloud Build and operationalize an ADF pipeline Modernize a data warehouse Be aware of performance and security considerations while moving data . 
650 0 |a Microsoft software. 
650 0 |a Microsoft .NET Framework. 
650 0 |a Application software. 
650 0 |a Computer communication systems. 
650 1 4 |a Microsoft and .NET.  |0 http://scigraph.springernature.com/things/product-market-codes/I29030 
650 2 4 |a Computer Applications.  |0 http://scigraph.springernature.com/things/product-market-codes/I23001 
650 2 4 |a Computer Communication Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/I13022 
700 1 |a Narain, Abhishek.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484241219 
776 0 8 |i Printed edition:  |z 9781484241233 
776 0 8 |i Printed edition:  |z 9781484247648 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4122-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)