Dynamic Oracle Performance Analytics Using Normalized Metrics to Improve Database Speed /

Use an innovative approach that relies on big data and advanced analytical techniques to analyze and improve Oracle Database performance. The approach in this book is a step-change away from traditional methods. Instead of relying on a few hand-picked, favorite metrics, or wading through multiple sp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cornejo, Roger (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03743nam a2200445 4500
001 978-1-4842-4137-0
003 DE-He213
005 20191019011058.0
007 cr nn 008mamaa
008 181206s2018 xxu| s |||| 0|eng d
020 |a 9781484241370  |9 978-1-4842-4137-0 
024 7 |a 10.1007/978-1-4842-4137-0  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
072 7 |a UMT  |2 thema 
082 0 4 |a 005.74  |2 23 
100 1 |a Cornejo, Roger.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamic Oracle Performance Analytics  |h [electronic resource] :  |b Using Normalized Metrics to Improve Database Speed /  |c by Roger Cornejo. 
250 |a 1st ed. 2018. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2018. 
300 |a XXI, 224 p. 83 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I. Performance Tuning Basics -- 1. Traditional Approaches -- Part II. The Dynamic Oracle Performance Analytics (DOPA) Process -- 2. Gathering Problem Information -- 3. Data Preparation -- 4. Statistical Analysis -- 5. Feature Selection -- 6. Taxonomy -- 7. Building the Model and Reporting -- Part III. Case Studies and Further Applications -- 8. Case Studies -- 9. Monitoring -- 10. Further Enhancements. 
520 |a Use an innovative approach that relies on big data and advanced analytical techniques to analyze and improve Oracle Database performance. The approach in this book is a step-change away from traditional methods. Instead of relying on a few hand-picked, favorite metrics, or wading through multiple specialized tables of information such as those found in an automatic workload repository (AWR) report, you will draw on all available data, applying big data methods and analytical techniques to draw impactful, focused performance improvement conclusions. This book reviews past and present practices, along with available tools, to help you pinpoint areas for improvement. The book then guides you through a step-by-step method that can be used to take advantage of all available metrics to identify problem areas and work toward improving them. The method presented simplifies the tuning process and solves the problem of metric overload. You will learn how to: collect and normalize data, generate deltas that are useful in performing statistical analysis, create and use a taxonomy to enhance your understanding of problem performance areas in your database and its applications, and create a root cause analysis report that enables understanding of a specific performance problem and its likely solutions. What You'll Learn: Collect and prepare metrics for analysis from a wide array of sources Apply statistical techniques to select relevant metrics Create a taxonomy to provide additional insight into problem areas Provide a metrics-based root cause analysis regarding the performance issue Generate an actionable tuning plan prioritized according to problem areas Monitor performance using database-specific normal ranges. 
650 0 |a Database management. 
650 1 4 |a Database Management.  |0 http://scigraph.springernature.com/things/product-market-codes/I18024 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484241363 
776 0 8 |i Printed edition:  |z 9781484241387 
776 0 8 |i Printed edition:  |z 9781484245910 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4137-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)