Machine Learning Using R With Time Series and Industry-Based Use Cases in R /

Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ramasubramanian, Karthik (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Singh, Abhishek (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:2nd ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03604nam a2200505 4500
001 978-1-4842-4215-5
003 DE-He213
005 20191024151350.0
007 cr nn 008mamaa
008 181212s2019 xxu| s |||| 0|eng d
020 |a 9781484242155  |9 978-1-4842-4215-5 
024 7 |a 10.1007/978-1-4842-4215-5  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Ramasubramanian, Karthik.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning Using R  |h [electronic resource] :  |b With Time Series and Industry-Based Use Cases in R /  |c by Karthik Ramasubramanian, Abhishek Singh. 
250 |a 2nd ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XXIV, 700 p. 233 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction to Machine Learning -- Chapter 2: Data Exploration and Preparation -- Chapter 3: Sampling and Resampling Techniques -- Chapter 4: Visualization of Data -- Chapter 5: Feature Engineering -- Chapter 6: Machine Learning Models: Theory and Practice -- Chapter 7: Machine Learning Model Evaluation -- Chapter 8: Model Performance Improvement -- Chapter 9: Time Series Modelling -- Chapter 10: Scalable Machine Learning and related technology -- Chapter 11: Introduction to Deep Learning Models using Keras and TensorFlow. 
520 |a Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. You will: Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R. 
650 0 |a Artificial intelligence. 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 0 |a Programming languages (Electronic computers). 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Open Source.  |0 http://scigraph.springernature.com/things/product-market-codes/I29090 
650 2 4 |a Programming Languages, Compilers, Interpreters.  |0 http://scigraph.springernature.com/things/product-market-codes/I14037 
700 1 |a Singh, Abhishek.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484242148 
776 0 8 |i Printed edition:  |z 9781484242162 
776 0 8 |i Printed edition:  |z 9781484247624 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4215-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)