|
|
|
|
LEADER |
03604nam a2200505 4500 |
001 |
978-1-4842-4215-5 |
003 |
DE-He213 |
005 |
20191024151350.0 |
007 |
cr nn 008mamaa |
008 |
181212s2019 xxu| s |||| 0|eng d |
020 |
|
|
|a 9781484242155
|9 978-1-4842-4215-5
|
024 |
7 |
|
|a 10.1007/978-1-4842-4215-5
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a Q334-342
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
100 |
1 |
|
|a Ramasubramanian, Karthik.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Machine Learning Using R
|h [electronic resource] :
|b With Time Series and Industry-Based Use Cases in R /
|c by Karthik Ramasubramanian, Abhishek Singh.
|
250 |
|
|
|a 2nd ed. 2019.
|
264 |
|
1 |
|a Berkeley, CA :
|b Apress :
|b Imprint: Apress,
|c 2019.
|
300 |
|
|
|a XXIV, 700 p. 233 illus., 24 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Chapter 1: Introduction to Machine Learning -- Chapter 2: Data Exploration and Preparation -- Chapter 3: Sampling and Resampling Techniques -- Chapter 4: Visualization of Data -- Chapter 5: Feature Engineering -- Chapter 6: Machine Learning Models: Theory and Practice -- Chapter 7: Machine Learning Model Evaluation -- Chapter 8: Model Performance Improvement -- Chapter 9: Time Series Modelling -- Chapter 10: Scalable Machine Learning and related technology -- Chapter 11: Introduction to Deep Learning Models using Keras and TensorFlow.
|
520 |
|
|
|a Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. You will: Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Open source software.
|
650 |
|
0 |
|a Computer programming.
|
650 |
|
0 |
|a Programming languages (Electronic computers).
|
650 |
1 |
4 |
|a Artificial Intelligence.
|0 http://scigraph.springernature.com/things/product-market-codes/I21000
|
650 |
2 |
4 |
|a Open Source.
|0 http://scigraph.springernature.com/things/product-market-codes/I29090
|
650 |
2 |
4 |
|a Programming Languages, Compilers, Interpreters.
|0 http://scigraph.springernature.com/things/product-market-codes/I14037
|
700 |
1 |
|
|a Singh, Abhishek.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9781484242148
|
776 |
0 |
8 |
|i Printed edition:
|z 9781484242162
|
776 |
0 |
8 |
|i Printed edition:
|z 9781484247624
|
856 |
4 |
0 |
|u https://doi.org/10.1007/978-1-4842-4215-5
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-CWD
|
950 |
|
|
|a Professional and Applied Computing (Springer-12059)
|