Machine Learning Using R With Time Series and Industry-Based Use Cases in R /

Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ramasubramanian, Karthik (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Singh, Abhishek (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:2nd ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1: Introduction to Machine Learning
  • Chapter 2: Data Exploration and Preparation
  • Chapter 3: Sampling and Resampling Techniques
  • Chapter 4: Visualization of Data
  • Chapter 5: Feature Engineering
  • Chapter 6: Machine Learning Models: Theory and Practice
  • Chapter 7: Machine Learning Model Evaluation
  • Chapter 8: Model Performance Improvement
  • Chapter 9: Time Series Modelling
  • Chapter 10: Scalable Machine Learning and related technology
  • Chapter 11: Introduction to Deep Learning Models using Keras and TensorFlow.