Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib /

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demon...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Johansson, Robert (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:2nd ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03808nam a2200505 4500
001 978-1-4842-4246-9
003 DE-He213
005 20191220130841.0
007 cr nn 008mamaa
008 181224s2019 xxu| s |||| 0|eng d
020 |a 9781484242469  |9 978-1-4842-4246-9 
024 7 |a 10.1007/978-1-4842-4246-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
100 1 |a Johansson, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Python   |h [electronic resource] :  |b Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib /  |c by Robert Johansson. 
250 |a 2nd ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XXIII, 700 p. 168 illus., 63 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Introduction to Computing with Python -- 2. Vectors, Matrices and Multidimensional Arrays -- 3. Symbolic Computing -- 4. Plotting and Visualization -- 5. Equation Solving -- 6. Optimization -- 7. Interpolation -- 8. Integration -- 9. Ordinary Differential Equations -- 10. Sparse Matrices and Graphs -- 11. Partial Differential Equations -- 12. Data Processing and Analysis -- 13. Statistics -- 14. Statistical Modeling -- 15. Machine Learning -- 16. Bayesian Statistics -- 17. Signal and Image Processing -- 18. Data Input and Output -- 19. Code Optimization. 
520 |a Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. 
650 0 |a Python (Computer program language). 
650 0 |a Computer software. 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
650 1 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Mathematical Software.  |0 http://scigraph.springernature.com/things/product-market-codes/M14042 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484242452 
776 0 8 |i Printed edition:  |z 9781484242476 
776 0 8 |i Printed edition:  |z 9781484246481 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4246-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)