PyTorch Recipes A Problem-Solution Approach /

Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a lo...

Full description

Bibliographic Details
Main Author: Mishra, Pradeepta (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2019.
Edition:1st ed. 2019.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03436nam a2200457 4500
001 978-1-4842-4258-2
003 DE-He213
005 20190704141649.0
007 cr nn 008mamaa
008 190128s2019 xxu| s |||| 0|eng d
020 |a 9781484242582  |9 978-1-4842-4258-2 
024 7 |a 10.1007/978-1-4842-4258-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
100 1 |a Mishra, Pradeepta.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a PyTorch Recipes  |h [electronic resource] :  |b A Problem-Solution Approach /  |c by Pradeepta Mishra. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XX, 184 p. 280 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction PyTorch, Tensors, Tensor Operations and Basics -- Chapter 2: Probability distributions using PyTorch -- Chapter 3: Convolutional Neural Network and RNN using PyTorch -- Chapter 4: Introduction to Neural Networks, Tensor Differentiation -- Chapter 5: Supervised Learning using PyTorch -- Chapter 6: Fine Tuning Deep Learning Algorithms using PyTorch -- Chapter 7: NLP and Text Processing using PyTorch. 
520 |a Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability distributions using PyTorch and get acquainted with its concepts. Further you will dive into transformations and graph computations with PyTorch. Along the way you will take a look at common issues faced with neural network implementation and tensor differentiation, and get the best solutions for them. Moving on to algorithms; you will learn how PyTorch works with supervised and unsupervised algorithms. You will see how convolutional neural networks, deep neural networks, and recurrent neural networks work using PyTorch. In conclusion you will get acquainted with natural language processing and text processing using PyTorch. You will: Master tensor operations for dynamic graph-based calculations using PyTorch Create PyTorch transformations and graph computations for neural networks Carry out supervised and unsupervised learning using PyTorch Work with deep learning algorithms such as CNN and RNN Build LSTM models in PyTorch Use PyTorch for text processing. 
650 0 |a Python (Computer program language). 
650 0 |a Big data. 
650 1 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484242575 
776 0 8 |i Printed edition:  |z 9781484242599 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4258-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)