Text Analytics with Python A Practitioner's Guide to Natural Language Processing /

Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. The second edition of this book will show you how to use the latest state-of-the-art frameworks in NLP, coupled with Machine Learning and Deep Learning to solve rea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sarkar, Dipanjan (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:2nd ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04697nam a2200481 4500
001 978-1-4842-4354-1
003 DE-He213
005 20190720021624.0
007 cr nn 008mamaa
008 190521s2019 xxu| s |||| 0|eng d
020 |a 9781484243541  |9 978-1-4842-4354-1 
024 7 |a 10.1007/978-1-4842-4354-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Sarkar, Dipanjan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Text Analytics with Python  |h [electronic resource] :  |b A Practitioner's Guide to Natural Language Processing /  |c by Dipanjan Sarkar. 
250 |a 2nd ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XXIV, 674 p. 189 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Natural Language Processing Basics -- Chapter 2: Python for Natural Language Processing -- Chapter 3: Processing and Understanding Text -- Chapter 4: Feature Engineering for Text Data -- Chapter 5: Text Classification -- Chapter 6: Text summarization and topic modeling -- Chapter 7: Text Clustering and Similarity analysis -- Chapter 8: Sentiment Analysis -- Chapter 9: Deep learning in NLP. 
520 |a Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. The second edition of this book will show you how to use the latest state-of-the-art frameworks in NLP, coupled with Machine Learning and Deep Learning to solve real-world case studies leveraging the power of Python. This edition has gone through a major revamp introducing several major changes and new topics based on the recent trends in NLP. We have a dedicated chapter around Python for NLP covering fundamentals on how to work with strings and text data along with introducing the current state-of-the-art open-source frameworks in NLP. We have a dedicated chapter on feature engineering representation methods for text data including both traditional statistical models and newer deep learning based embedding models. Techniques around parsing and processing text data have also been improved with some new methods. Considering popular NLP applications, for text classification, we also cover methods for tuning and improving our models. Text Summarization has gone through a major overhaul in the context of topic models where we showcase how to build, tune and interpret topic models in the context of an interest dataset on NIPS conference papers. Similarly, we cover text similarity techniques with a real-world example of movie recommenders. Sentiment Analysis is covered in-depth with both supervised and unsupervised techniques. We also cover both machine learning and deep learning models for supervised sentiment analysis. Semantic Analysis gets its own dedicated chapter where we also showcase how you can build your own Named Entity Recognition (NER) system from scratch. To conclude things, we also have a completely new chapter on the promised of Deep Learning for NLP where we also showcase a hands-on example on deep transfer learning. While the overall structure of the book remains the same, the entire code base, modules, and chapters will be updated to the latest Python 3.x release. ---------------------------------- Also the key selling points • Implementations are based on Python 3.x and state-of-the-art popular open source libraries in NLP • Covers Machine Learning and Deep Learning for Advanced Text Analytics and NLP • Showcases diverse NLP applications including Classification, Clustering, Similarity Recommenders, Topic Models, Sentiment and Semantic Analysis. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
650 0 |a Big data. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484243534 
776 0 8 |i Printed edition:  |z 9781484243558 
776 0 8 |i Printed edition:  |z 9781484252741 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4354-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)