Understand, Manage, and Prevent Algorithmic Bias A Guide for Business Users and Data Scientists /

The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Baer, Tobias (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: An Introduction to Biases and Algorithms
  • Chapter 1: Introduction
  • Chapter 2: Bias in Human Decision-Making
  • Chapter 3: How Algorithms Debias Decisions
  • Chapter 4: The Model Development Process
  • Chapter 5: Machine Learning in a Nutshell
  • Part II: Where Does Algorithmic Bias Come From?
  • Chapter 6: How Real World Biases Will Be Mirrored by Algorithms
  • Chapter 7: Data Scientists' Biases
  • Chapter 8: How Data Can Introduce Biases
  • Chapter 9: The Stability Bias of Algorithms
  • Chapter 10: Biases Introduced by the Algorithm Itself
  • Chapter 11: Algorithmic Biases and Social Media
  • Part III: What to Do About Algorithmic Bias from a User Perspective
  • Chapter 12: Options for Decision-Making
  • Chapter 13: Assessing the Risk of Algorithmic Bias
  • Chapter 14: How to Use Algorithms Safely
  • Chapter 15: How to Detect Algorithmic Biases
  • Chapter 16: Managerial Strategies for Correcting Algorithmic Bias
  • Chapter 17: How to Generate Unbiased Data
  • Part IV: What to Do About Algorithmic Bias from a Data Scientist's Perspective
  • Chapter 18: The Data Scientist's Role in Overcoming Algorithmic Bias
  • Chapter 19: An X-Ray Exam of Your Data
  • Chapter 20: When to Use Machine Learning
  • Chapter 21: How to Marry Machine Learning with Traditional Methods
  • Chapter 22: How to Prevent Bias in Self-Improving Models
  • Chapter 23: How to Institutionalize Debiasing.