Learn PySpark Build Python-based Machine Learning and Deep Learning Models /

Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges. You'll start by reviewing PySpark fundamentals,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Singh, Pramod (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03226nam a2200505 4500
001 978-1-4842-4961-1
003 DE-He213
005 20191220130550.0
007 cr nn 008mamaa
008 190906s2019 xxu| s |||| 0|eng d
020 |a 9781484249611  |9 978-1-4842-4961-1 
024 7 |a 10.1007/978-1-4842-4961-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
100 1 |a Singh, Pramod.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Learn PySpark  |h [electronic resource] :  |b Build Python-based Machine Learning and Deep Learning Models /  |c by Pramod Singh. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XVIII, 210 p. 187 illus., 32 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction to PySpark -- Chapter 2: Data Processing -- Chapter 3: Spark Structured Streaming -- Chapter 4: Airflow -- Chapter 5: Machine Learning Library (MLlib) -- Chapter 6: Supervised Machine Learning -- Chapter 7: Unsupervised Machine Learning -- Chapter 8: Deep Learning Using PySpark. 
520 |a Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges. You'll start by reviewing PySpark fundamentals, such as Spark's core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github. 
650 0 |a Python (Computer program language). 
650 0 |a Big data. 
650 0 |a Machine learning. 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 1 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Machine Learning.  |0 http://scigraph.springernature.com/things/product-market-codes/I21010 
650 2 4 |a Open Source.  |0 http://scigraph.springernature.com/things/product-market-codes/I29090 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484249604 
776 0 8 |i Printed edition:  |z 9781484249628 
856 4 0 |u https://doi.org/10.1007/978-1-4842-4961-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)