Python for SAS Users A SAS-Oriented Introduction to Python /

Business users familiar with Base SAS programming can now learn Python by example. You will learn via examples that map SAS programming constructs and coding patterns into their Python equivalents. Your primary focus will be on pandas and data management issues related to analysis of data. It is est...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Betancourt, Randy (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Chen, Sarah (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03563nam a2200433 4500
001 978-1-4842-5001-3
003 DE-He213
005 20191220130329.0
007 cr nn 008mamaa
008 190906s2019 xxu| s |||| 0|eng d
020 |a 9781484250013  |9 978-1-4842-5001-3 
024 7 |a 10.1007/978-1-4842-5001-3  |2 doi 
040 |d GrThAP 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
100 1 |a Betancourt, Randy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Python for SAS Users  |h [electronic resource] :  |b A SAS-Oriented Introduction to Python /  |c by Randy Betancourt, Sarah Chen. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XVII, 434 p. 119 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Why Python -- Chapter 2: Python Types and Formatting -- Chapter 3: pandas Library -- Chapter 4: Indexing and GroupBy -- Chapter 5: Data Management -- Chapter 6: pandas Readers and Writers -- Chapter 7: Date and Time -- Chapter 8: saspy Module -- Appendix A: Generating the Tickets DataFrame -- Appendix B: Many-to-Many Use Case -- . 
520 |a Business users familiar with Base SAS programming can now learn Python by example. You will learn via examples that map SAS programming constructs and coding patterns into their Python equivalents. Your primary focus will be on pandas and data management issues related to analysis of data. It is estimated that there are three million or more SAS users worldwide today. As the data science landscape shifts from using SAS to open source software such as Python, many users will feel the need to update their skills. Most users are not formally trained in computer science and have likely acquired their skills programming SAS as part of their job. As a result, the current documentation and plethora of books and websites for learning Python are technical and not geared for most SAS users. Python for SAS Users provides the most comprehensive set of examples currently available. It contains over 200 Python scripts and approximately 75 SAS programs that are analogs to the Python scripts. The first chapters are more Python-centric, while the remaining chapters illustrate SAS and corresponding Python examples to solve common data analysis tasks such as reading multiple input sources, missing value detection, imputation, merging/combining data, and producing output. This book is an indispensable guide for integrating SAS and Python workflows. What You'll Learn: Quickly master Python for data analysis without using a trial-and-error approach Understand the similarities and differences between Base SAS and Python Better determine which language to use, depending on your needs Obtain quick results. 
650 0 |a Python (Computer program language). 
650 1 4 |a Python.  |0 http://scigraph.springernature.com/things/product-market-codes/I29080 
700 1 |a Chen, Sarah.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484250006 
776 0 8 |i Printed edition:  |z 9781484250020 
856 4 0 |u https://doi.org/10.1007/978-1-4842-5001-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)