Agile Machine Learning Effective Machine Learning Inspired by the Agile Manifesto /

Build resilient applied machine learning teams that deliver better data products through adapting the guiding principles of the Agile Manifesto. Bringing together talented people to create a great applied machine learning team is no small feat. With developers and data scientists both contributing e...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Carter, Eric (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Hurst, Matthew (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berkeley, CA : Apress : Imprint: Apress, 2019.
Έκδοση:1st ed. 2019.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04166nam a2200493 4500
001 978-1-4842-5107-2
003 DE-He213
005 20191118141814.0
007 cr nn 008mamaa
008 190821s2019 xxu| s |||| 0|eng d
020 |a 9781484251072  |9 978-1-4842-5107-2 
024 7 |a 10.1007/978-1-4842-5107-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.76.M52 
072 7 |a UMP  |2 bicssc 
072 7 |a COM051380  |2 bisacsh 
072 7 |a UMP  |2 thema 
082 0 4 |a 004.165  |2 23 
100 1 |a Carter, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Agile Machine Learning  |h [electronic resource] :  |b Effective Machine Learning Inspired by the Agile Manifesto /  |c by Eric Carter, Matthew Hurst. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XVII, 248 p. 35 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Early Delivery -- Chapter 2: Changing Requirements -- Chapter 3: Continuous Delivery -- Chapter 4: Aligning with the Business -- Chapter 5: Motivated Individuals -- Chapter 6: Effective Communication -- Chapter 7: Monitoring -- Chapter 8: Sustainable Development -- Chapter 9: Technical Excellence -- Chapter 10 Simplicity -- Chapter 11: Self-organizing Teams -- Chapter 12: Tuning and Adjusting -- Chapter 13: Conclusion. 
520 |a Build resilient applied machine learning teams that deliver better data products through adapting the guiding principles of the Agile Manifesto. Bringing together talented people to create a great applied machine learning team is no small feat. With developers and data scientists both contributing expertise in their respective fields, communication alone can be a challenge. Agile Machine Learning teaches you how to deliver superior data products through agile processes and to learn, by example, how to organize and manage a fast-paced team challenged with solving novel data problems at scale, in a production environment. The authors' approach models the ground-breaking engineering principles described in the Agile Manifesto. The book provides further context, and contrasts the original principles with the requirements of systems that deliver a data product. What You'll Learn: Effectively run a data engineering team that is metrics-focused, experiment-focused, and data-focused Make sound implementation and model exploration decisions based on the data and the metrics Know the importance of data wallowing: analyzing data in real time in a group setting Recognize the value of always being able to measure your current state objectively Understand data literacy, a key attribute of a reliable data engineer, from definitions to expectations This book is for anyone who manages a machine learning team, or is responsible for creating production-ready inference components. Anyone responsible for data project workflow of sampling data; labeling, training, testing, improving, and maintaining models; and system and data metrics will also find this book useful. Readers should be familiar with software engineering and understand the basics of machine learning and working with data. 
650 0 |a Microsoft software. 
650 0 |a Microsoft .NET Framework. 
650 0 |a Software engineering. 
650 0 |a Big data. 
650 1 4 |a Microsoft and .NET.  |0 http://scigraph.springernature.com/things/product-market-codes/I29030 
650 2 4 |a Software Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/I14029 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
700 1 |a Hurst, Matthew.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781484251065 
776 0 8 |i Printed edition:  |z 9781484251089 
856 4 0 |u https://doi.org/10.1007/978-1-4842-5107-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059)