Simulation-Based Optimization Parametric Optimization Techniques and Reinforcement Learning /

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems w...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gosavi, Abhijit (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US : Imprint: Springer, 2015.
Έκδοση:2nd ed. 2015.
Σειρά:Operations Research/Computer Science Interfaces Series, 55
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04148nam a22005175i 4500
001 978-1-4899-7491-4
003 DE-He213
005 20151204191303.0
007 cr nn 008mamaa
008 141030s2015 xxu| s |||| 0|eng d
020 |a 9781489974914  |9 978-1-4899-7491-4 
024 7 |a 10.1007/978-1-4899-7491-4  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Gosavi, Abhijit.  |e author. 
245 1 0 |a Simulation-Based Optimization  |h [electronic resource] :  |b Parametric Optimization Techniques and Reinforcement Learning /  |c by Abhijit Gosavi. 
250 |a 2nd ed. 2015. 
264 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2015. 
300 |a XXVI, 508 p. 42 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 55 
505 0 |a Background -- Simulation basics -- Simulation optimization: an overview -- Response surfaces and neural nets -- Parametric optimization -- Dynamic programming -- Reinforcement learning -- Stochastic search for controls -- Convergence: background material -- Convergence: parametric optimization -- Convergence: control optimization -- Case studies. 
520 |a Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search, and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search, and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for  discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online), and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning, and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical, and computer), operations research, computer science, and applied mathematics. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Computer simulation. 
650 0 |a Management science. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Simulation and Modeling. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781489974907 
830 0 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 55 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4899-7491-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)