Data-driven Generation of Policies

This Springer Brief presents a basic algorithm that provides a correct solution to finding an optimal state change attempt, as well as an enhanced algorithm that is built on top of the well-known trie data structure. It explores correctness and algorithmic complexity results for both algorithms and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Parker, Austin (Συγγραφέας), Simari, Gerardo I. (Συγγραφέας), Sliva, Amy (Συγγραφέας), Subrahmanian, V.S (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03394nam a22005655i 4500
001 978-1-4939-0274-3
003 DE-He213
005 20151030051415.0
007 cr nn 008mamaa
008 140104s2014 xxu| s |||| 0|eng d
020 |a 9781493902743  |9 978-1-4939-0274-3 
024 7 |a 10.1007/978-1-4939-0274-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Parker, Austin.  |e author. 
245 1 0 |a Data-driven Generation of Policies  |h [electronic resource] /  |c by Austin Parker, Gerardo I. Simari, Amy Sliva, V.S. Subrahmanian. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a X, 50 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction and Related Work -- Optimal State Change Attempts -- Different Kinds of Effect Estimators -- A Comparison with Planning under Uncertainty -- Experimental Evaluation -- Conclusions. 
520 |a This Springer Brief presents a basic algorithm that provides a correct solution to finding an optimal state change attempt, as well as an enhanced algorithm that is built on top of the well-known trie data structure. It explores correctness and algorithmic complexity results for both algorithms and experiments comparing their performance on both real-world and synthetic data. Topics addressed include optimal state change attempts, state change effectiveness, different kind of effect estimators, planning under uncertainty and experimental evaluation. These topics will help researchers analyze tabular data, even if the data contains states (of the world) and events (taken by an agent) whose effects are not well understood. Event DBs are omnipresent in the social sciences and may include diverse scenarios from political events and the state of a country to education-related actions and their effects on a school system. With a wide range of applications in computer science and the social sciences, the information in this Springer Brief is valuable for professionals and researchers dealing with tabular data, artificial intelligence and data mining. The applications are also useful for advanced-level students of computer science. 
650 0 |a Computer science. 
650 0 |a Mathematical statistics. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a Simari, Gerardo I.  |e author. 
700 1 |a Sliva, Amy.  |e author. 
700 1 |a Subrahmanian, V.S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493902736 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0274-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)