Covering Walks in Graphs

Covering Walks  in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous Kӧnigsberg Bridge Prob...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fujie, Futaba (Συγγραφέας), Zhang, Ping (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02975nam a22005055i 4500
001 978-1-4939-0305-4
003 DE-He213
005 20151124021607.0
007 cr nn 008mamaa
008 140124s2014 xxu| s |||| 0|eng d
020 |a 9781493903054  |9 978-1-4939-0305-4 
024 7 |a 10.1007/978-1-4939-0305-4  |2 doi 
040 |d GrThAP 
050 4 |a QA166-166.247 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT013000  |2 bisacsh 
082 0 4 |a 511.5  |2 23 
100 1 |a Fujie, Futaba.  |e author. 
245 1 0 |a Covering Walks in Graphs  |h [electronic resource] /  |c by Futaba Fujie, Ping Zhang. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 110 p. 37 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Eulerian Walks -- 2. Hamiltonian Walks -- 3. Traceable Walks -- References -- Index. . 
520 |a Covering Walks  in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous Kӧnigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and Hamiltonian concepts are examined. Describes several variations of traceable numbers, which provide new frame works for several well-known Hamiltonian concepts and produce interesting new results. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Combinatorics. 
650 0 |a Graph theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Graph Theory. 
650 2 4 |a Combinatorics. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Zhang, Ping.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493903047 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0305-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)